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New to the This Edition
•	New and expanded active learning path. Essentials of Geology, 12th edition, is designed for learning. Every chapter begins 

with Focus on Concepts. Each numbered learning objective corresponds to a major section in the chapter. The statements 
identify the knowledge and skills students should master by the end of the chapter, helping students prioritize key concepts.  

The 12th edition of Essentials of Geology, like its predecessors, is a college-level text for 
students taking their first and perhaps only course in geology. The text is intended to be a meaningful, non-
technical survey for people with little background in science. Usually students are taking this class to meet a 
portion of their college’s or university’s general requirements.

In addition to being informative and up-to-date, a major goal of Essentials of Geology is to meet the need 
of beginning students for a readable and user-friendly text; a text that is a highly usable tool for learning the 
basic principles and concepts of geology.
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Tsunami striking the coast of Japan on March 11, 2011. 
(Photo by Sadatsugu Tomizawa/AFP/Getty Images)

Each statement represents the primary 
learning objective for the corresponding 

major heading within the chapter. After you 
complete the chapter, you should be able to:

ocus on Concepts

9.1 Sketch and describe the mechanism that 
generates most earthquakes.

9.2 Compare and contrast the types of 
seismic waves and describe the principle 
of the seismograph.

9.3 Explain how seismographs are used to 
locate the epicenter of an earthquake.

9.4 Distinguish between intensity scales and 
magnitude scales.

9.5 List and describe the major destructive 
forces that earthquake vibrations can 
trigger.

9.6 Locate Earth’s major earthquake belts 
on a world map and label the regions 
associated with the largest earthquakes.

9.7 Compare and contrast the goals of short-
range earthquake predictions and long-
range forecasts.

9.8 Explain how Earth acquired its layered 
structure and briefly describe how seismic 
waves are used to probe Earth’s interior.

9.9 List and describe each of Earth’s major 
layers.

F 
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and the largest earthquake yet recorded, the 1960 Chile 
quake (M 9.5).

Fault Propagation Slippage along large faults 
does not occur instantaneously. The initial slip begins at 
the hypocenter and propagates (travels) along the fault 
surface, at 2 to 4 kilometers per second—faster than a 
rifle shot. Slippage on one section of the fault adds strain 
to the adjacent segment, which may also slip. As this 
zone of slippage advances, it can slow down, speed up, 
or even jump to a nearby fault segment. The propagation 
of the rupture zone along a fault that is 300 kilometers 
(200 miles) long, for example, takes about 1.5 minutes, 
and it takes about 30 seconds for a fault that is 100 kilo-
meters (60 miles) long. Earthquake waves are generated 
at every point along the fault as that portion of the fault 
begins to slip.

9.2  Seismology: The Study of Earthquake Waves
Compare and contrast the types of seismic waves and describe 
the principle of the seismograph.

The study of earthquake waves, seismology, dates back 
to attempts made in China almost 2000 years ago to deter-
mine the direction from which these waves originated. 
The earliest-known instrument, invented by Zhang Heng, 
was a large hollow jar that contained a weight suspended 
from the top (Figure 9.8). The suspended weight (similar 
to a clock pendulum) was connected to the jaws of several 
large dragon figurines that encircled the container. The 
jaws of each dragon held a metal ball. When earthquake 
waves reached the instru-
ment, the relative motion 
between the suspended mass 
and the jar would dislodge 
some of the metal balls into 
the waiting mouths of frogs 
directly below.

Instruments That Record 
Earthquakes
In principle, modern seismographs, or seismometers, are 
similar to the instruments used in ancient China. A seismo-
graph has a weight freely suspended from a support that 
is securely attached to bedrock (Figure 9.9). When vibra-

Did You Know?
Humans have inadvertently 
triggered earthquakes. In 
1962 Denver began experi-
encing frequent tremors. The 
earthquakes were located 
near an army waste-disposal 
well used to inject waste 
into the ground. Investiga-
tors concluded that the 
pressurized fluids made their 
way along a buried fault 
surface, which reduced fric-
tion and triggered fault slip-
page and earthquakes. Sure 
enough, when the pumping 
halted, so did the tremors.

Figure 9.9 Principle of the 
seismograph The inertia of 
the suspended weight tends 
to keep it motionless while 
the recording drum, which is 
anchored to bedrock, vibrates 
in response to seismic waves. 
The stationary weight provides 
a reference point from which 
to measure the amount of 
displacement occurring as a 
seismic wave passes through 
the ground. (Photo courtesy of 
Zephyr/Photo Researchers, Inc.)

Concept Checks 9.1
 ① What is an earthquake? Under what circumstances 

do most large earthquakes occur?

 ② How are faults, hypocenters, and epicenters related?

 ③ Who was the first person to explain the mechanism 
by which most earthquakes are generated?

 ④ Explain what is meant by elastic rebound.

 ⑤ What is the approximate duration of an earthquake that 
occurs along a 300-kilometer- (200-mile-) long fault?

 ⑥ Defend or rebut this statement: Faults that do not 
experience fault creep may be considered safe.

 ⑦ What type of faults tend to produce the most 
destructive earthquakes?

Ball
dropping

Figure 9.8 Ancient Chi-
nese seismograph During 
an Earth tremor, the dragons 
located in the direction of 
the main vibrations would 
drop a ball into the mouth 
of a frog below. (Photo by 
James E. Patterson Collection)
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Within the chapter, each major section 
concludes with Concept Checks 
that allow students to check their 
understanding and comprehension 
of important ideas and terms before 
moving on to the next section.  
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9.1  What Is an Earthquake?
Sketch and describe the mechanism that generates most 
earthquakes.

On January 12, 2010, an estimated 316,000 people lost their lives when a magnitude 7.0 
earthquake struck the small Caribbean nation of Haiti, the poorest country in the Western Hemi-
sphere. In addition to the staggering death toll, there were more than 300,000 injuries, and more 
than 280,000 houses were destroyed or damaged. The quake originated only 25 kilometers (15 miles) 
from the country’s densely populated capital city of Port-au-Prince (Figure 9.1). It occurred along a 
San Andreas–like fault system at a depth of just 10 kilometers (6 miles). Because of the quake’s shal-
low depth, ground shaking was exceptional for an event of this magnitude.

Other factors that contributed to the Port-au-Prince disaster included the city’s geologic setting 
and the nature of its buildings. The city is built on sediment, which is quite susceptible to ground 
shaking during an earthquake. More importantly, inadequate or nonexistent building codes meant that 
buildings collapsed far more readily than they should have. At least 52 aftershocks, measuring magni-
tude 4.5 or greater, jolted the area and added to the trauma survivors experienced for days after the 
original quake. An earthquake’s magnitude (abbreviation: M) is a measure of earthquake strength that 
will be discussed later in this chapter.

crust is enormous, causing these fractures in the crust to be 
“squeezed shut.”

Earthquakes tend to occur along preexisting faults 
where internal stresses have caused the crustal rocks to 
rupture or break into two or more units. The location 
where slippage begins is called the hypocenter, or focus. 

An earthquake is ground shaking caused by the sudden 
and rapid movement of one block of rock slipping past 
another along fractures in Earth’s crust called faults. Most 
faults are locked, except for brief, abrupt movements when 
sudden slippage produces an earthquake. Faults are locked 
because the confining pressure exerted by the overlying 

Figure 9.1 Presidential 
palace damaged during 
the 2010 Haiti earthquake 
(Photo by Luis Acosta/AFP/
Getty Images)

Did You Know?
Literally thousands of earth-
quakes occur daily! Fortu-
nately, the majority of them 
are too small to be felt by 
people, and the majority of 
larger ones occur in remote 
regions. Their existence is 
known only because of sen-
sitive seismographs.
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•	Concepts in Review. This new end-of-chapter feature is an important 
part of the book’s revised active learning path. Each review is 
coordinated with the Focus on Concepts at the beginning of the 
chapter and with the numbered sections within the chapter. It is a 
readable and concise overview of key ideas, with photos, diagrams, 
and questions that also help students focus on important ideas and test 
their understanding of key concepts.

Each chapter concludes with Give It Some Thought. The questions 
and problems in this section challenge learners by involving them in 
activities that require higher-order thinking skills, such as application, 
analysis, and synthesis of material in the chapter. Some of the GIST 
problems are intended to develop an awareness of and appreciation for 
some of the Earth system’s many interrelationships.
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Slippage along a fault produced 

this offset in an orange grove 

east of Calexico, California.

Slippage along a fault produced 

this offset in an orange grove 

east of Calexico, California.

This fence was offset
2.5 meters (8.5 feet)
during the1906 San Francisco earthquake. 

Figure 9.4 Displacement of structures along a 
fault (Color photo by John S. Shelton/University of 
Washington Libraries; inset photo by G. K. Gilbert/
USGS)

SmartFigure 9.5  
Elastic rebound

A. Original position of rocks on opposite sides of a fault.

B. The movement of tectonic plates causes the rocks to 
bend and store elastic energy.

C. Once the strength of the rocks is exceeded, slippage 
along the fault produces an earthquake.

D. The rocks return to their original shape, but in a new 
location. 

Deformation of rocks

T
im

e

Deformation of a
limber stick

Te
ns

 to
 h

un
dr

ed
s 

of
 y

ea
rs

Se
co

nd
s 

to
 a

 fe
w

 m
in

ut
es

was accompanied by horizontal surface displacements 
of several meters along the northern portion of the San 
Andreas Fault. Field studies determined that during this 
single earthquake, the Pacific plate lurched as much as 
9.7 meters (32 feet) northward past the adjacent North 
American plate. To better visualize this, imagine stand-
ing on one side of the fault and watching a person on 
the other side suddenly slide horizontally 32 feet to 
your right.

What Reid concluded from his investigations is 
illustrated in Figure 9.5. Over tens to hundreds of years, 
differential stress slowly bends the crustal rocks on 
both sides of a fault. This is much like a person bend-
ing a limber wooden stick, as shown in Figure 9.5A,B. 
Frictional resistance keeps the fault from rupturing and 
slipping. (Friction acts against slippage and is enhanced 
by irregularities that occur along the fault surface.) At 
some point, the stress along the fault overcomes the 
frictional resistance, and slip initiates. Slippage allows 
the deformed (bent) rock to “snap back” to its original, 
stress-free, shape; a series of earthquake waves radi-
ate as it slides (see Figure 9.5C,D). Reid termed the 
“springing back” elastic rebound because the rock 
behaves elastically, much as a stretched rubber band 
does when it is released.

Aftershocks and Foreshocks
Strong earthquakes are followed by numerous earth-
quakes of lesser magnitude, called aftershocks, which 
result from crust along the fault surface adjusting to the 
displacement caused by the main shock. Aftershocks 
gradually diminish in frequency and intensity over a 
period of several months following an earthquake. In a 
little more than a month following the 2010 Haiti earth-
quake, the U.S. Geological Survey detected nearly 60 
aftershocks with magnitudes of 4.5 or greater. The two 
largest aftershocks had magnitudes of 6.0 and 5.9, both 
large enough to inflict damage. Hundreds of minor trem-
ors were also felt.

extensive subsidence. In addition to these 
vertical displacements, offsets in fences, 
roads, and other structures indicate that 
horizontal movements between blocks of 
Earth’s crust are also common (Figure 9.4).

The actual mechanism of earthquake 
generation eluded geologists until H. F. 
Reid of Johns Hopkins University conduct-
ed a landmark study following the 1906 
San Francisco earthquake. This earthquake 
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9.8 Earth’s Interior
explain how earth acquired its layered structure and briefly 
describe how seismic waves are used to probe earth’s interior.

• The layered internal structure of Earth developed due to gravitational 
sorting of Earth materials early in the history of the planet. The 
densest material settled to form Earth’s center, while the least dense 
material rose to form the surface.

9.9 Earth’s Layers
list and describe each of earth’s major layers.
Key Terms: crust, mantle, lithosphere, asthenosphere, core, outer core, 

inner core

• Earth has two distinct kinds of crust: oceanic and continental. 
Oceanic crust is thinner, denser, and younger than continental 
crust. Oceanic crust also readily subducts, whereas the less dense 
continental crust does not.

• Seismic waves allow geoscientists to “look” into Earth’s interior, 
which would otherwise be invisible to scientific investigation. 
Like the x-rays used to image human bodies, seismic waves 
generated by large earthquakes reveal details about Earth’s 
layered structure.

• Earth’s mantle may be divided by density into upper and lower 
portions. The uppermost mantle makes up the bulk of rigid 
lithospheric plates, while a relatively weak layer, the asthenosphere, 
lies beneath it.

• The composition of Earth’s core is likely a mix of iron, nickel, and 
lighter elements. Iron and nickel are common heavy elements in 
meteorites, the leftover “building blocks” of Earth. The outer core is 
dense (around 10 times the density of water). It is known to be liquid, 
as S waves cannot pass through it. The inner core is solid and very 
dense (more than 13 times the density of water).

	① Draw a sketch that illustrates the concept of elastic rebound. Develop 
an analogy other than a rubber band to illustrate this concept.

	② The accompanying map shows the locations of many of the largest 
earthquakes in the world since 1900. Refer to the map of Earth’s 
plate boundaries in Figure 2.11 (page xx) and determine which type 
of plate boundary is most often associated with these destructive 
events.

	③ Use the accompanying seismogram to answer the following 
questions:
a. Which of the three types of seismic waves reached the seismo-

graph first?
b. What is the time interval between the arrival of the first P wave 

and the arrival of the first S wave?
c. Use your answer from Question b and the travel–time graph in 

Figure 9.15 on page 247 to determine the distance from the seis-
mic station to the earthquake.

d. Which of the three types of seismic waves had the highest 
amplitude when they reached the seismic station?

Give It Some Thought

	④ You go for a jog on a beach and choose to run near the water, where 
the sand is well packed and solid under your feet. With each step, 
you notice that your footprint quickly fills with water but not water 
coming in from the ocean. What is this water’s source? For what 
earthquake-related hazard is this phenomenon a good analogy?

	⑤ Make a sketch that illustrates why a tsunami often causes a rapid 
withdrawal of water from beaches before the first surge.

	⑥ Why is it possible to issue a tsunami warning but not a warning for 
an impending earthquake? Describe a scenario in which a tsunami 
warning would be of little value.
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Core
The composition of the core is thought to be an iron–
nickel alloy, with minor amounts of oxygen, silicon, and 
sulfur—elements that readily form compounds with iron. 
At the extreme pressure found in the core, this iron-rich 
material has an average density of more than 10 grams 
per cubic centimeter (10 times the density of water) and 
is about 13 grams per cubic centimeter (13 times the 
density of water) at Earth’s center. The core is divided 
into two regions that exhibit very different mechanical 
strengths. The outer core is a liquid layer 2270 kilome-
ters (1410 miles) thick. The movement of metallic iron 
within this zone generates Earth’s magnetic field. The 
inner core is a sphere with a radius of 1216 kilometers 
(754 miles). Despite its higher temperature, the iron in 
the inner core is solid due to the immense pressures that 
exist in the center of the planet.

thick below the oldest portions of the continents (see Figure 
9.37). Beneath this stiff layer to a depth of about 350 kilome-
ters (217 miles) lies a soft, comparatively weak layer known 
as the asthenosphere (“weak sphere”). The top portion of 
the asthenosphere has a temperature/pressure regime that 
results in a small amount of melting. Within this very weak 
zone, the asthenosphere and lithosphere are mechanically 
detached from each other. The result is that the lithosphere is 
able to move independently of the asthenosphere.

It is important to emphasize that the strength of vari-
ous Earth materials is a function of both their composition 
and the temperature and pressure of their environment. 
The entire lithosphere does not behave like a brittle solid 
similar to rocks found on the surface. Rather, the rocks of 
the lithosphere get progressively hotter and weaker (more 
easily deformed) with increasing depth. At the depth of 
the uppermost asthenosphere, the rocks are close enough 
to their melting temperature that they are very easily 
deformed, and some melting may actually occur. Thus, 
the uppermost asthenosphere is weak because it is near its 
melting point, just as hot wax is weaker than cold wax.

From 660 kilometers (410 miles) deep to the top of 
the core, at a depth of 2900 kilometers (1800 miles), is the 
lower mantle. Because of an increase in pressure (caused 
by the weight of the rock above), the mantle gradually 
strengthens with depth. Despite their strength, however, 
the rocks within the lower mantle are very hot and capable 
of very gradual flow.

Concept Checks 9.9
 ① How do continental crust and oceanic crust differ?

 ② Contrast the physical makeup of the asthenosphere 
and the lithosphere.

 ③ How are Earth’s inner and outer cores different? How 
are they similar?

9.1 What Is an Earthquake?
Sketch and describe the mechanism that generates most earthquakes.
Key Terms: earthquake, fault, hypocenter (focus), epicenter, seismic 

wave, elastic rebound, aftershock, foreshock, strike-slip fault, trans-
form fault, fault creep, thrust fault, megathrust fault

• Earthquakes are caused by the sudden movement of blocks of rock on 
opposite sides of faults. The spot where the rock begins to slip is the 
hypocenter (or focus). Seismic waves radiate from this spot outward 
into the surrounding rock. The point on Earth’s surface directly above 
the hypocenter is the epicenter.

• Elastic rebound explains why most earthquakes happen: Rock is 
deformed by movement of Earth’s crust. However, frictional resistance 
keeps the fault locked in place, and the rock bends elastically. Strain 
builds up until it is greater than the resistance, and the blocks of rock 
suddenly slip, releasing the pent-up energy in the form of seismic waves. 
As elastic rebound occurs, the blocks of rock on either side of the fault 
return to their original shapes, but they are now in new positions.

• Foreshocks are smaller earthquakes that precede larger earthquakes. 
Aftershocks are smaller earthquakes that happen after large earthquakes, 
as the crust readjusts to the new, post-earthquake conditions.

oncepts in Review Earthquakes and Earth’s InteriorC
• Faults associated with plate boundaries are the source of most large 

earthquakes.

• The San Andreas Fault in California is an example of a transform 
fault boundary capable of generating destructive earthquakes.

• Subduction zones are marked by megathrust faults, large faults 
that are responsible for the largest earthquakes in recorded history. 
Megathrust faults are also capable of generating tsunamis.

?  label the 
blanks on 
the diagram 
to show the 
relationship 
between 
earthquakes 
and faults.
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that ensued, called the Taconic Orogeny, 
caused the volcanic arc along with ocean 
sediments that were located on the upper 
plate to be thrust over the larger continental 
block. The remnants of this volcanic arc and 
oceanic sediments are recognized today as 
the metamorphic rocks found across much 
of the western Appalachians, especially in 
New York (Figure 11.30B). In addition 
to the pervasive regional metamorphism, 
numerous magma bodies intruded the crust-
al rocks along the entire continental margin.

Acadian Orogeny A second episode 
of mountain building, called the Acadian 
Orogeny, occurred about 350 million years 
ago. The continued closing of this ancient 
ocean basin resulted in the collision of a 
microcontinent with North America (Figure 
11.30C). This orogeny involved thrust fault-
ing, metamorphism, and the intrusion of 
several large granite bodies. In addition, this 
event added substantially to the width of 
North American.

Alleghanian Orogeny The final 
orogeny, called the Alleghanian Orogeny, 
occurred between 250 and 300 million 
years ago, when Africa collided with North 
America. The result was the displacement 
of the material that was accreted earlier 
by as much as 250 kilometers (155 miles) 
toward the interior of North America. This 
event also displaced and further deformed 
the shelf sediments and sedimentary rocks 
that had once flanked the eastern margin 
of North America (Figure 11.30D). Today 
these folded and thrust-faulted sandstones, 
limestones, and shales make up the largely unmetamor-
phosed rocks of the Valley and Ridge Province (Figure 
11.31). Outcrops of the folded and thrust-faulted struc-
tures that characterize collisional mountains are found as 
far inland as central Pennsylvania and West Virginia.

With the collision of Africa and North America, the 
Appalachians, perhaps as majestic as the Himalayas, lay 
in the interior of Pangaea. Then, about 180 million years 
ago, this newly formed supercontinent began to break 
into smaller fragments, a process that ultimately cre-
ated the modern Atlantic Ocean. Because this new zone 
of rifting occurred east of the suture that formed when 
Africa and North America collided, remnants of Africa 
remain “welded” to the North American plate (Figure 
11.30E). The crust underlying Florida is an  example.

Other mountain ranges that exhibit evidence of conti-
nental collisions include the Alps and the Urals. The Alps 
formed as Africa and at least two smaller crustal fragments 

31111.6  Collisional Mountain Belts

Concept Checks 11.6
 ① Differentiate between terrane and terrain.

 ② During the formation of the Himalayas, the conti-
nental crust of Asia was deformed more than India 
proper. Why was this the case?

 ③ Where might magma be generated in a newly formed 
collisional mountain belt?

 ④ How does the plate tectonics theory help explain the 
existence of fossil marine life in rocks atop compres-
sional mountains?

Figure 11.31 The Valley and Ridge Province This region 
of the Appalachian Mountains consists of folded and faulted 
sedimentary strata that were displaced landward along thrust 
faults as a result of the collision of Africa with North America. 
(NASA/GSFC/JPL, MISR Science Team)

Mobile Field Trip

Valley and Ridge Blue Ridge Piedmont Coastal
Plain

collided with Europe during the closing of the Tethys Sea. 
Similarly, the Urals were uplifted during the assembly of 
Pangaea, when northern Europe and northern Asia col-
lided, forming a major portion of Eurasia.
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•	 SmartFigures—art that teaches. SmartFigures. Essentials of 
Geology, 12th edition, has more than 100 of these figures distributed 
through each chapter. Just use your mobile device to scan the Quick 
Response (QR) code next to a SmartFigure, and the art comes alive. 
Each 2- to 3-minute feature, prepared and narrated by Professor 
Callan Bentley, is a mini-lesson that examines and explains the 
concepts illustrated by the figure. It is truly art that teaches.

•	Mobile Field Trips. Scattered through this new edition of Essentials 
of Geology are thirteen video field trips. On each trip, you will 
accompany geologist–pilot–photographer Michael Collier in the 
air and on the ground to see and learn about landscapes that relate 
to discussions in the chapter. These extraordinary field trips are 
accessed in the same way as SmartFigures: You simply scan a 
QR code that accompanies a figure in the chapter—usually one of 
Michael’s outstanding photos.
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•	Revised organization. Earlier editions of this text had a 
more traditional chapter organization, in which the theory 
of plate tectonics was fully developed relatively late in the 
text. A major change to Essentials of Geology, 12th edition, 
is a reorganization in which this basic theory is presented 
in Chapter 2 to reflect the unifying role that plate tectonics 
plays in our understanding of planet Earth. With the basic 
framework of plate tectonics firmly established, we turn to 
discussions of Earth materials and the related processes of 
volcanism and metamorphism. This is followed by chapters 
that examine earthquakes, the origin and evolution of the 
ocean floor, and crustal deformation and mountain  
building. Along the way, students will clearly see the 
relationships among these phenomena and the theory of 
plate tectonics.

•	An unparalleled visual program. In addition to more  
than 150 new, high-quality photos and satellite images, 
dozens of figures are new or have been redrawn by 
renowned geoscience illustrator Dennis Tasa. Maps and 
diagrams are frequently paired with photographs for  
greater effectiveness. Further, many new and revised  
figures have additional labels that narrate the process  
being illustrated and guide students as they examine the 
figures resulting in is a visual program that is clear and  
easy to understand.

•	MasteringGeologyTM. MasteringGeology delivers  
engaging, dynamic learning opportunities—focused 
on course objectives and responsive to each student’s 
progress—that are proven to help students absorb course 
material and understand difficult concepts. Assignable 
activities in MasteringGeology include Encounter Earth 
activities using Google EarthTM, SmartFigure activities, 
GeoTutor activities, GigaPan® activities, Geoscience 
Animation activities, GEODe tutorials, and more. 
MasteringGeology also includes all instructor resources  
and a robust Study Area with resources for students.

•	 Significant updating and revision of content. A basic 
function of a college science textbook is to provide clear, 
understandable presentations that are accurate, engaging, 
and up-to-date. Our number-one goal is to keep Essentials of 
Geology current, relevant, and highly readable for beginning 
students. Every part of this text has been examined carefully 
with this goal in mind. Many discussions, case studies, and 
examples have been revised. The 12th edition represents 
perhaps the most extensive and thorough revision in the long 
history of this textbook.

Distinguishing Features
Readability
The language of this text is straightforward and written to be un-
derstood. Clear, readable discussions with a minimum of techni-
cal language are the rule. The frequent headings and subheadings 
help students follow discussions and identify the important ideas 
presented in each chapter. In the 12th edition, we have continued 
to improve readability by examining chapter organization and 
flow and by writing in a more personal style. Significant portions 
of several chapters were substantially rewritten in an effort to 
make the material easier to understand.

Focus on Basic Principles and  
Instructor Flexibility
Although many topical issues are treated in the 12th edition of 
Essentials of Geology, it should be emphasized that the main 
focus of this new edition remains the same as the focus of each of 
its predecessors: to promote student understanding of basic prin-
ciples. As much as possible, we have attempted to provide the 
reader with a sense of the observational techniques and reasoning 
processes that constitute the science of geology.

As in previous editions, we have designed most chapters 
to be self-contained so that material may be taught in a differ-
ent sequence, according to the preference of the instructor or 
the dictates of the laboratory. Thus, an instructor who wishes to 
discuss erosional processes prior to earthquakes, plate tectonics, 
and mountain building may do so without difficulty.

A Strong Visual Component
Geology is highly visual, and art and photographs play a critical  
role in an introductory textbook. As in previous editions,  
Dennis Tasa, a gifted artist and respected geoscience illustra-
tor, has worked closely with the authors to plan and produce the 
diagrams, maps, graphs, and sketches that are so basic to student 
understanding. The result is art that is clearer and easier to under-
stand than ever before.

Our aim is to get maximum effectiveness from the visual 
component of the text. Michael Collier, an award-winning geolo-
gist–pilot–photographer, aided greatly in this quest. As you read 
through this text, you will see dozens of his extraordinary aerial 
photographs. His contributions truly help bring geology alive for 
the reader.
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•	 Three	pre-built	PowerPoint™	presentations: The first 
presentation contains all the images/figures/tables from the 
text embedded within the PowerPoint slides, while the second 
includes a complete and customizable lecture outline with 
supporting art, and the third includes Classroom Response 
System (CRS) Questions.

•	 The	Geoscience	Animation	Library including more than 100 
animations that  illustrate many difficult-to-visualize topics 
of geology. Created through a unique collaboration among 
five of Pearson’s leading geoscience authors, these animations 
represent a significant step forward in lecture presentation 
aids. They are provided both as Flash files and, for your 
convenience, preloaded into PowerPoint slides.

•	 Images	of	Earth photo gallery allowing you to supplement 
your personal slides with an amazing collection of more than 
300 geologic photos contributed by Marli Miller (University 
of Oregon) and other professionals in the field. The photos are 
available on the Instructor’s Resource DVD.

•	 Instructor’s	Manual	containing learning objectives, chapter 
outlines, answers to end-of-chapter questions, and suggested 
short demonstrations to spice up your lecture. The Test Bank 
incorporates art and averages 75 multiple-choice, true/false, 
short-answer, and critical thinking questions per chapter.

•	 TestGen: An electronic version of the Testbank that allows you 
to customize and manage your tests. Testbank is also available 
in Microsoft Word. 

•	All the art, tables and photos in the text in .jpg files

Course Management

Pearson offers instructor and student media for this 12th edition 
of Essentials of Geology in formats compatible with Blackboard 
and other course management platforms. Contact your local Pear-
son representative for more information.

For the Student
The student resources to accompany Essentials of Geology, 12th 
edition, have been further refined, with the goal of focusing the 
students’ efforts and improving their understanding of the con-
cepts of geology.

 

MasteringGeology from Pearson is an online homework, tutorial, 
and assessment product designed to improve results by helping stu-
dents quickly master concepts. Students using MasteringGeology 
benefit from self-paced tutorials that feature specific wrong-answer 
feedback and hints to keep them engaged and on track. Mastering-
GeologyTM also offers students the Study Area, which contains:

•	 Geoscience	Animation	Library. More than 100 animations 
illustrating many difficult to understand geology concepts.

•	 GEODe:	Essentials	of	Geology. An interactive visual 
walkthrough of basic ideas and concepts

•	 In the News	RSS	Feeds. Current geological events and news 
articles are pulled into the site, with assessment.

•	 SmartFigures 

The Teaching  
and Learning Package 
For the Instructor
Pearson continues to improve the instructor resources for this 
text, with the goal of providing dynamic teaching aids and sav-
ing you time in preparing for your classes.

 

MasteringGeology is an online homework, tutorial, and assess-
ment product designed to improve results by helping students 
quickly master concepts. Students using MasteringGeology ben-
efit from self-paced tutorials that feature specific wrong-answer 
feedback and hints to keep them engaged and on track. Mastering-
GeologyTM offers:

•	Assignable activities, including Encounter Earth activities 
using Google EarthTM, SmartFigure activities, Mobile Field 
Trip activities GeoTutor activities, GigaPan® activities, 
Geoscience Animation activities, GEODe tutorials, and more

•	Additional Concept Check and Give It Some Thought 
questions, Test Bank questions, and Reading Quizzes

•	A student Study Area with Geoscience Animations, GEODe: 
Essentials of Geology activities, In the News RSS feeds, Self 
Study Quizzes, Web Links, Glossary, and Flashcards

•	 Pearson eText for Essentials of Geology, 12th edition, which 
gives students access to the text whenever and wherever they 
can access the Internet and includes powerful interactive and 
customization functions

 See www.masteringgeology.com

Learning Catalytics

Learning Catalytics™ is a “bring your own device” student en-
gagement, assessment, and classroom intelligence system. With 
Learning Catalytics you can:

•	Assess students in real time, using open-ended tasks to probe 
student understanding.

•	Understand immediately where students are and adjust your 
lecture accordingly.

•	 Improve your students’ critical-thinking skills.

•	Access rich analytics to understand student performance.

•	Add your own questions to make Learning Catalytics fit your 
course exactly.

•	Manage student interactions with intelligent grouping and timing.

Learning Catalytics is a technology that has grown out of 
twenty years of cutting edge research, innovation, and imple-
mentation of interactive teaching and peer instruction. Available 
integrated with MasteringGeology. www.learningcatalytics.com

Instructor’s Resource DVD

The IRDVD provides an integrated collection of resources 
designed to help instructors make efficient and effective use of 
their time. It features:

www.masteringgeology.com
www.learningcatalytics.com
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•	Mobile	Field	Trips 

•	 Pearson	eText 
•	 Optional	Self	Study	Quizzes 

•	Web	Links 

•	 Glossary 
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1
An Introduction  
to Geology



The view from Toroweap Overlook along the North  
Rim of Arizona’s Grand Canyon National Park.  
(Photo by Michael Collier)

Each statement represents the primary 
learning objective for the corresponding 

major heading within the chapter. After you 
complete the chapter, you should be able to:

ocus on Concepts

1.1 Distinguish between physical and 
historical geology and describe the 
connections between people and 
geology.

1.2 Summarize early and modern views on 
how change occurs on Earth and relate 
them to the prevailing ideas about the 
age of Earth.

1.3 Discuss the nature of scientific inquiry, 
including the construction of hypotheses 
and the development of theories.

1.4 List and describe Earth’s four major 
spheres.

1.5 Define system and explain why Earth is 
considered to be a system.

1.6 Outline the stages in the formation of our 
solar system.

1.7 Describe Earth’s internal structure.

1.8 Sketch, label, and explain the rock cycle.

1.9 List and describe the major features of 
the continents and ocean basins.

F
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The subject of this text is geology, from the Greek 
geo (Earth) and logos (discourse). Geology is the sci-
ence that pursues an understanding of planet Earth. 
Understanding Earth is challenging because our planet 
is a dynamic body with many interacting parts and a 
complex history. Throughout its long existence, Earth 
has been changing. In fact, it is changing as you read 
this page and will continue to do so into the foresee-
able future. Sometimes the changes are rapid and vio-
lent, as when landslides or volcanic eruptions occur. 
Just as often, change takes place so slowly that it goes 
unnoticed during a lifetime. Scales of size and space 
also vary greatly among the phenomena that geologists 
study. Sometimes geologists must focus on phenomena 
that are microscopic, and at other times they must deal 
with features that are continental or global in scale.

Physical and Historical Geology
Geology is traditionally divided into two broad areas—
physical and historical. Physical geology, which is 
the primary focus of this book, examines the materials 
composing Earth and seeks to understand the many 
processes that operate beneath and upon its surface 
(Figure 1.1). The aim of historical geology, on the 
other hand, is to understand the origin of Earth and its 
development through time. Thus, it strives to establish 
an orderly chronological arrangement of the multitude 
of physical and biological changes that have occurred 
in the geologic past. The study of physical geology 
logically precedes the study of Earth history because 
we must first understand how Earth works before we 
attempt to unravel its past. It should also be pointed 
out that physical and historical geology are divided 
into many areas of specialization. Every chapter of this 
book represents one or more areas of specialization in 
geology.

1.1  Geology: The Science of Earth
Distinguish between physical and historical geology and describe 
the connections between people and geology.

The spectacular eruption of a volcano, the terror brought by an earthquake, the 
magnificent scenery of a mountain range, and the destruction created by a landslide or flood are all 
subjects for a geologist. The study of geology deals with many fascinating and practical questions 
about our physical environment. What forces produce mountains? Will there soon be a major earth-
quake in California? What was the Ice Age like, and will there be another? How were ore deposits 
formed? Where should we search for water? Will plentiful oil be found if a well is drilled in a par-
ticular location? Geologists seek to answer these and many other questions about Earth, its history, 
and its resources.

Figure 1.1 Internal and 
external processes The 
processes that operate 
beneath and upon Earth’s 
surface are an important 
focus of physical geology. 
(Volcano photo by Lucas 
Jackson/Reuters; glacier 
photo by Michael Collier)

External processes, such as landslides, rivers, and glaciers, erode
and sculpt surface features. This glacier is shaping
mountains in Alaska.

External processes, such as landslides, rivers, and glaciers, erode
and sculpt surface features. This glacier is shaping
mountains in Alaska.

Internal processes are those that occur beneath Earth's surface. 
Sometimes they lead to the formation of major features at the surface.
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tsunamis, earthquakes, and 
landslides. Of course, geologic 
hazards are natural processes. 
They become hazards only when 
people try to live where these 
processes occur.

According to the United 
Nations, in 2008, for the first 
time, more people lived in cities 
than in rural areas. This global 
trend toward urbanization con-
centrates millions of people into 
megacities, many of which are 
vulnerable to natural hazards. 
Coastal sites are becoming more 
vulnerable because development 
often destroys natural defenses 
such as wetlands and sand dunes. 
In addition, there is a growing 
threat associated with human 
influences on the Earth system; 
one example is sea-level rise that 
is linked to global climate change. 
Some megacities are exposed to 
seismic (earthquake) and volcanic 

hazards where inappropriate land use and poor construc-
tion practices, coupled with rapid population growth, are 
increasing vulnerability.

Resources are another important focus of geology 
that is of great practical value to people. They include 
water and soil, a great variety of metallic and nonmetallic 

Geology is perceived as a science that is done 
outdoors—and rightly so. A great deal of geology is 
based on observations, measurements, and experiments 
conducted in the field. But geology is also done in the 
laboratory, where, for example, the analysis of minerals 
and rocks provides insights into many basic processes 
and the microscopic study of fossils unlocks 
clues to past environments (Figure 1.2). 
Frequently, geology requires an understand-
ing and application of knowledge and prin-
ciples from physics, chemistry, and biology. 
Geology is a science that seeks to expand 
our knowledge of the natural world and our 
place in it.

Geology, People, and 
the Environment
The primary focus of this book is to develop 
an understanding of basic geologic principles, 
but along the way we will explore numerous 
important relationships between people and the 
natural environment. Many of the problems 
and issues addressed by geology are of practi-
cal value to people.

Natural hazards are a part of living on 
Earth. Every day they adversely affect mil-
lions of people worldwide and are respon-
sible for staggering damages (Figure 1.3). 
Among the hazardous Earth processes that 
geologists study are volcanoes, floods, 

Figure 1.2 In the field and in the lab Geology not only involves outdoor fieldwork but 
work in the laboratory as well. (Photo by British Antarctic Survey/Science Source)

This paleontologist is collecting fossils in Antarctica. 
Later, a detailed analysis will occur in the lab.

A massive earthquake in March 2011,
created a tsunami that devastated 
a portion of coastal Japan.

Figure 1.3 Earthquake destruction Geologic hazards are natural processes. They become hazards only 
when people try to live where these processes occur. (Photo by Yasuyoshi Chiba/AFP/Getty Images/Newscom)

Did You Know?
Each year an average Ameri-
can requires huge quantities 
of Earth materials. Imagine 
receiving your annual share 
in a single delivery. A large 
truck would pull up to your 
home and unload 12,965 
lb of stone, 8945 lb of 
sand and gravel, 895 lb of 
cement, 395 lb of salt, 361 
lb of phosphate, and 974 lb 
of other nonmetals. In addi-
tion, there would be 709 lb 
of metals, including iron, 
aluminum, and copper.

Did You Know?
It took until about the year 
1800 for the world popula-
tion to reach 1 billion. By  
1927, the number had dou-
bled to 2 billion. According  
to United Nations estimates, 
world population reached  
7 billion in late October 
2011. We are currently add-
ing about 80 million people 
per year to the planet.
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these vital resources but also with maintaining supplies 
and with the environmental impact of their extraction 
and use.

Geologic processes clearly have an impact on people. 
In addition, we humans can dramatically influence geo-
logic processes. For example, river flooding is natural, but 
the magnitude and frequency of flooding can be affected 
significantly by human activities such as clearing forests, 
building cities, and constructing dams. Unfortunately, 
natural systems do not always adjust to artificial changes 
in ways that we can anticipate. Thus, an alteration to the 
environment that was intended to benefit society some-
times has the opposite effect.

At appropriate places throughout this book, you will 
have opportunities to examine different aspects of our rela-
tionship with the physical environment. It will be rare to 
find a chapter that does not address some aspect of natural 
hazards, environmental issues, or resources. Significant 
parts of some chapters provide the basic geologic knowl-
edge and principles needed to understand environmental 
problems.

Figure 1.4 Drilling for 
oil Energy and mineral 
resources represent an 
important link between 
people and geology. Petro-
leum provides more than 
36 percent of U.S. energy 
consumption. (Photo by 
Peter Bowater/Science 
Source)

Modern offshore oil production platform
in the North Sea.

Concept Checks 1.1
 ① Name and distinguish between the two broad subdi-

visions of geology.

 ② List at least three different geologic hazards.

 ③ Aside from geologic hazards, describe another 
important connection between people and geology.

The nature of our Earth—its materials and processes—has 
been a focus of study for centuries. Writings about such 
topics as fossils, gems, earthquakes, and volcanoes date 
back to the early Greeks, more than 2300 years ago.

Certainly the most influential Greek philosopher was 
Aristotle. Unfortunately, Aristotle’s explanations about 
the natural world were not based on keen observations and 
experiments. Instead, they were arbitrary pronouncements. 
He believed that rocks were created under the “influ-
ence” of the stars and that earthquakes occurred when air 
crowded into the ground, was heated by central fires, and 
escaped explosively. When confronted with a fossil fish, 
he explained that “a great many fishes live in the earth 
motionless and are found when excavations are made.” 
Although Aristotle’s explanations may have been adequate 
for his day, they unfortunately continued to be viewed as 
authoritative for many centuries, thus inhibiting the accep-
tance of more up-to-date ideas. After the Renaissance of 

the 1500s, however, more people became interested in 
finding answers to questions about Earth.

Catastrophism
In the mid-1600s, James Ussher, Anglican Archbishop of 
Armagh, Primate of all Ireland, published a major work that 
had immediate and profound influences. A respected scholar 
of the Bible, Ussher constructed a chronology of human 
and Earth history in which he calculated that Earth was 
only a few thousand years old, having been created in 4004 
b.c. Ussher’s treatise earned widespread acceptance among 
Europe’s scientific and religious leaders, and his chronology 
was soon printed in the margins of the Bible itself.

During the seventeenth and eighteenth centuries, 
Western thought about Earth’s features and processes was 
strongly influenced by Ussher’s calculation. The result was 
a guiding doctrine called catastrophism. Catastrophists 

1.2  The Development of Geology
Summarize early and modern views on how change occurs on Earth 
and relate them to the prevailing ideas about the age of Earth.

minerals, and energy (Figure 1.4). Together they form 
the very foundation of modern civilization. Geology 
deals not only with the formation and occurrence of 
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Geology Today
Today the basic tenets of uniformitarianism are just as 
viable as in Hutton’s day. Indeed, today we realize more 
strongly than ever before that the present gives us insight 
into the past and that the physical, chemical, and biologi-
cal laws that govern geologic processes remain unchang-
ing through time. However, we also understand that the 
doctrine should not be taken too literally. To say that 
geologic processes in the past were the same as those 
occurring today is not to suggest that they have always had 
the same relative importance or that they have operated at 
precisely the same rate. Moreover, some important geo-
logic processes are not currently observable, but evidence 
that they occur is well established. For example, we know 
that Earth has experienced impacts from large meteorites 
even though we have no human witness accounts of those 
impacts. Nevertheless, such events have altered Earth’s 
crust, modified its climate, and strongly influenced life on 
the planet.

The acceptance of uniformitarianism meant the accep-
tance of a very long history for Earth. Although Earth 
processes vary in intensity, they still take a very long time 
to create or destroy major landscape features. The Grand 
Canyon provides a good example (Figure 1.5).

believed that Earth’s landscapes 
were shaped primarily by great 
catastrophes. Features such as 
mountains and canyons, which 
today we know take great spans 
of time to form, were explained 
as having been produced by 
sudden and often worldwide 
disasters produced by unknow-
able causes that no longer oper-
ate. This philosophy was an 
attempt to fit the rates of Earth 
processes to the then-current 
ideas on the age of Earth.

The Birth 
of Modern 
Geology
Against the backdrop of Aris-
totle’s views and an Earth cre-
ated in 4004 b.c., a Scottish 
physician and gentleman farmer 
named James Hutton published 
Theory of the Earth in 1795. 
In this work, Hutton put forth 
a fundamental principle that is 
a pillar of geology today: uni-
formitarianism. It states that 
the physical, chemical, and bio-
logical laws that operate today 
have also operated in the geologic past. This means that 
the forces and processes that we observe presently shaping 
our planet have been at work for a very long time. Thus, to 
understand ancient rocks, we must first understand present-
day processes and their results. This idea is commonly 
stated as the present is the key to the past.

Prior to Hutton’s Theory of the Earth, no one had 
effectively demonstrated that geologic processes occur 
over extremely long periods of time. However, Hutton 
persuasively argued that forces that appear small can, over 
long spans of time, produce effects that are just as great as 
those resulting from sudden catastrophic events. Unlike 
his predecessors, Hutton carefully cited verifiable observa-
tions to support his ideas.

For example, when Hutton argued that mountains are 
sculpted and ultimately destroyed by weathering and the 
work of running water and that their wastes are carried 
to the oceans by processes that can be observed, he said, 
“We have a chain of facts which clearly demonstrate . . . 
that the materials of the wasted mountains have traveled 
through the rivers”; and further, “There is not one step in 
all this progress . . . that is not to be actually perceived.” 
He then went on to summarize this thought by asking a 
question and immediately providing the answer: “What 
more can we require? Nothing but time.”

Did You Know?
Shortly after Archbishop 
Ussher determined an age 
for Earth, another biblical 
scholar, Dr. John Lightfoot 
of Cambridge, felt he could 
be even more specific. He 
wrote that Earth was cre-
ated “on the 26th of Octo-
ber 4004 bc at 9 o’clock in 
the morning.” (As quoted in 
William L. Stokes, Essentials 
of Earth History, Prentice 
Hall, Inc. 1973, p. 20.)

Grand Canyon rocks span more than 1.5 billion years of Earth history.

The uppermost layer,
the Kaibab Formation,
is about 250 million years old.

Rocks at the bottom are
nearly 2 billion years old.

The uppermost layer,
the Kaibab Formation,
is about 250 million years old.

Rocks at the bottom are
nearly 2 billion years old.

Mobile Field Trip

Figure 1.5 Earth history—Written in the rocks The Grand Canyon of the 
Colorado River in northern Arizona. (Photo by Dennis Tasa)
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“recent” by a geologist, and a rock sample that has 
been dated at 10 million years may be called “young.” 
An appreciation for the magnitude of geologic time is 
important in the study of geology because many pro-
cesses are so gradual that vast spans of time are needed 

The rock record contains evidence which shows that 
Earth has experienced many cycles of mountain build-
ing and erosion. Concerning the ever-changing nature of 
Earth through great expanses of geologic time, Hutton 
made a statement that was to become his most famous. 
In concluding his classic 1788 paper published in the 
Transactions of the Royal Society of Edinburgh, he stat-
ed, “The results, therefore, of our present enquiry 
is, that we find no vestige of a beginning—no 
prospect of an end.”

In the chapters that follow, we will be exam-
ining the materials that compose our planet and 
the processes that modify it. It is important to 
remember that, although many features of our 
physical landscape may seem to be unchanging 
over the decades we observe them, they are nev-
ertheless changing—but on time scales of hun-
dreds, thousands, or even many millions  
of years.

The Magnitude of  
Geologic Time
Among geology’s important contributions to 
human knowledge is the discovery that Earth has 
a very long and complex history. Although Hutton 
and others recognized that geologic time is exceed-
ingly long, they had no methods to accurately 
determine the age of Earth. Early time scales sim-
ply placed the events of Earth history in the proper 
sequence or order, without knowledge of how long 
ago in years they occurred.

Today our understanding of radioactivity 
allows us to accurately determine numerical dates 
for rocks that represent important events in Earth’s 
distant past (Figure 1.6). For example, we know 
that the dinosaurs died out about 65 million years 
ago. Today the age of Earth is put at about 4.6 bil-
lion years. Chapter 18 is devoted to a much more 
complete discussion of geologic time and the geo-
logic time scale.

The concept of geologic time is new to many 
nongeologists. People are accustomed to deal-
ing with increments of time that are measured in 
hours, days, weeks, and years. Our history books 
often examine events over spans of centuries, but 
even a century is difficult to appreciate fully. For 
most of us, someone or something that is 90 years 
old is very old, and a 1000-year-old artifact is 
ancient.

By contrast, those who study geology must 
routinely deal with vast time periods—millions 
or billions (thousands of millions) of years. 
When viewed in the context of Earth’s 4.6-bil-
lion-year history, a geologic event that occurred 
100 million years ago may be characterized as 

Did You Know?
Estimates indicate that 
erosional processes are low-
ering the North American 
continent at a rate of about 
3 cm per 1000 years. At this 
rate, it would take 100 mil-
lion years to level a 3000 m 
(10,000 ft) high peak.

Figure 1.6 Geologic time scale: A basic reference The time scale 
divides the vast 4.6-billion-year history of Earth into eons, eras, peri-
ods, and epochs. Numbers on the time scale represent time in mil-
lions of years before the present. The Precambrian accounts for more 
than 88 percent of geologic time.
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What if we compress the 4.6 billion years of
Earth history into a single year?

1. January 1
Origin of

Earth

2. February 28
Oldest known

rocks

3. Late March:
Earliest life
(bacteria)

5. Late
November:
Plants and

animals move to
the land

4. Mid-November:
Beginning of the
Phanerozoic eon.

Animals having hard
parts become abundant

6. December 15 to 26
Dinosaurs dominate

8. Dec. 31
(11:49)
Humans

(Homo sapiens)
appear

7. December 31
the last day of the year

(all times are P.M.)9. Dec. 31
(11:58:45)

Ice Age glaciers
recede from the

Great Lakes

10. Dec. 31
(11:59:45 to 11:59:50)

Rome rules the
Western world 

11. Dec. 31
(11:59:57)

Columbus arrives
in the New World

12. Dec. 31
(11:59:59.999)

Turn of the
millennium
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Concept Checks 1.2
 ① Describe Aristotle’s influence on geology.

 ② Contrast catastrophism and uniformitarianism. How 
did each view the age of Earth?

 ③ How old is Earth?

 ④ Refer to Figure 1.6 and list the eon, era, period, and 
epoch in which we live.

 ⑤ Why is an understanding of the magnitude of  
geologic time important for a geologist?

before significant changes occur. How long is 4.6 bil-
lion years? If you were to begin counting at the rate of 
one number per second and continued 24 hours a day, 7 
days a week and never stopped, it would take about two 
lifetimes (150 years) to reach 4.6 billion! Figure 1.7 
provides another interesting way of viewing the expanse 
of geologic time.

The foregoing is just one of many analogies that have 
been conceived in an attempt to convey the magnitude of 
geologic time. Although helpful, all of them, no matter 
how clever, only begin to help us comprehend the vast 
expanse of Earth history.

As members of a modern society, we are constantly 
reminded of the benefits derived from science. But what 
exactly is the nature of scientific inquiry? Science is a pro-

1.3  The Nature of Scientific Inquiry
Discuss the nature of scientific inquiry, including the 
construction of hypotheses and the development of theories.

cess of producing knowledge. The process depends both 
on making careful observations and on creating explana-
tions that make sense of the observations. Developing an 

        SmartFigure 1.7  
Magnitude of geologic 
time




